Intro Data Science NumPy Pandas: Concept Notes
"""
Topic 08: Introduction to Data Science (NumPy & Pandas) - Concept Notes
1. NumPy (Numerical Python)
- Fundamental package for scientific computing.
- Core object: ndarray (n-dimensional array).
- Fast, efficient for large datasets compared to standard Python lists.
- Operations: Element-wise arithmetic, linear algebra, statistical methods.
2. Pandas
- Library for data manipulation and analysis.
- Core objects:
- Series: 1D labeled array.
- DataFrame: 2D labeled data structure (like a table/Excel).
- Features: Data cleaning, filtering, merging, grouping, and handling missing data.
"""
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(f"NumPy Array: {arr}")
print(f"Array Shape: {arr.shape}")
arr_double = arr * 2
print(f"Vectorized (x2): {arr_double}")
print(f"Mean: {np.mean(arr)}, Std Dev: {np.std(arr)}")
import pandas as pd
data = {
&
&
&
}
df = pd.DataFrame(data)
print("\nPandas DataFrame:\n", df)
print("\nAge Column:\n", df[&
over_30 = df[df[&
print("\nUsers >= 30:\n", over_30)